
Introduction

The MyDoorOpener project has attracted a surprisingly high number of
enthusiasts over the years. This is our third “simplified assembly process”
document, which is always getting simpler and simpler with each release. This
simplification is highly due to the increased interest in the IoT (Internet of Things)
phenomenon, which drives creation of simplified hardware and lower production
costs.

For reference purposes, you can still find all documents (past and current):

v3 (DFRobot Xboard Relay) *current* http://mydooropener.com/downloads/MyDoorOpener-Instructions-3.pdf

v2 (Arduino + DFRobot Relay Shield) http://mydooropener.com/downloads/MyDoorOpener-Instructions-2.pdf

v1 (Arduino + DFRobot Single Relay Shield) http://mydooropener.com/downloads/MyDoorOpener-Instructions.pdf

This new even more simplified assembly process brings the project accessibility
to a whole new level of simplicity and also affordability as the number of
components is drastically reduced.

Again, the objective of this assembly process is to provide an easier way to build
the project, particularly for people with more limited knowledge of general
electronics.

This doesn’t mean you don’t need to know anything about electronics ... You still
need to have some basic understanding. What it does mean is that you can get
around with a simplified components selection/purchase process. For many, this
is great news, which makes the project a whole lot more accessible.

Components Supplier

The components for this assembly process can be ordered directly from the
following electronics parts suppliers (we are not affiliated with any of them in any
way):

Suppliers
http://www.dfrobot.com
http://www.robotshop.com/

Components List

Following is the list of components that should be ordered to build an entry-level
setup for the MyDoorOpener project (this setup can control 2 doors/devices):

The prices above can give you an indication of rough costing for the project, but
those prices may obviously change over time. The same applies for the actual
part numbers and their availability. We can’t guarantee anything, but we’ll try our
best to keep this document up to date (please report any discrepancy you find
when purchasing your components).

The Hardware
The DFRobot Xboard Relay is a 3-in-1 board that combines an Arduino micro-
controller, an Ethernet shield and a Relay shield, all on a single board. It offers 2
controllable relays. Alternatively, you could use a separate Arduino Uno board,
combined with a separate Arduino Ethernet shield and a separate Relay shield.

REF: http://www.dfrobot.com/index.php?route=product/product&product_id=837

The Assembly Process

1.Assembly required for opening and closing of door/device.

Connect one of the DFRobot Xboard relays to
your existing garage door opener wall button.
This will require the installation of 2 low voltage
wires going from one of the terminal blocks
labelled COMx and NOx, to your existing
garage door wall mount button station (the ‘x’ in
COMx and NOx is a value between 1 and 2).

When you open up your garage wall
mount button station, you’ll typically
find 2 screws onto which you’ll attach
the other ends of the 2 low voltage
wires coming from the relay block.

It doesn’t matter which terminal from
the wall mount button station gets
linked with COMx or NOx, for as long
as the entire setup can form a closed
loop whenever the relay gets
triggered.

Repeat the above procedure for each door/device you want controlled (up to 2),
using a distinct COMx/NOx terminal block for each door/device.

Following is the pin# used for each of the relays on the Xboard Relay:
Device # Pin for relay
1 (operated via relay @ COM1/NO1) Digital pin #7
2 (operated via relay @ COM2/NO2) Digital pin #8

2.Assembly required for status monitoring (opened/closed) of door/device.

Connect the DFRobot Xboard Relay to your
status sensing device, typically installed on
your door/device. This will require the
installation of 2 low voltage wires going
from the Xboard Relay’s GND pin and one
of the board’s analog pins. Have those 2
wires form a closed loop, going thru your
status sensing device.

When connecting the 2 wires on the
DFRobot Xboard Relay, you will need to
solder them onto the board (or fasten them
using silicone or any other fastener you’re
comfortable working with).

We recommend using the following pins for your status sensing device(s):
Device # Pins for sensor
1 (operated via relay @ COM1/NO1) Analog pin #3, GND
2 (operated via relay @ COM2/NO2) Analog pin #4, GND

Your status sensing device should be configured so that it connects the GND to
the analog pin when the door is closed. When the door gets opened, your status
sensing device should disconnect the GND from the analog pin. This is how
MyDoorOpener knows the door/device is opened or closed. So, GND attached to
analog pin means the door is closed and a broken link means the door is opened.

You can use any status sensing device you wish, for as long as it respects the
above rules. Typically, you’d use contact sensors which should be readily
available from your local hardware store:

Typical alarm contact sensors should
work great. You can also Google around
“contact sensor” or “garage contact
sensor” to find good candidates for your
project.

Repeat the above procedure for each
door or device you want monitored, using a distinct analog pin for each
door/device. The GND pin should be shared for all sensors.

This concludes the hardware assembly process.

Software Configuration

1.Download the Arduino IDE software from the Arduino web site, based on the
operating system you are using:

Operating System Arduino Download
Windows http://arduino.cc/download.php?f=/arduino-1.0.6-windows.exe
Mac OSX http://arduino.cc/download.php?f=/arduino-1.0.6-macosx.zip
Linux 32bit http://arduino.cc/download.php?f=/arduino-1.0.6-linux32.tgz
Linux 64bit http://arduino.cc/download.php?f=/arduino-1.0.6-linux64.tgz

* Note that the version currently supported is version 1.0.6. Using any other
version of the Arduino IDE is not officially supported.

2.Download the MyDoorOpener project ZIP file:

https://github.com/yanavery/MyDoorOpener-Arduino/zipball/master

3.Have the files extracted from the ZIP file so that the directory and file structure
is similar to the following:

Respecting the location of libraries is important. If you don’t, you will get compiler
warnings and/or errors when compiling the project with the Arduino IDE.

4.Open the MyDoorOpener.ino file inside the Arduino IDE. Edit the following lines
to match your specific configuration (and save):

Line

Item Description

~ 53 IP
Address

Change to match the network IP address you want your
Arduino to be accessible from. You will need to make sure this
network IP address is reserved and never assigned to any
other devices on your internal network. This is not the address
you will be accessing your Arduino from the iPhone
application. You need to configure NAT forwarding on your
home router to do so. See
http://en.wikipedia.org/wiki/Port_forwarding for more details.

~ 58 Password Change to the password you want to protect your Arduino with.
This password needs to match the password you will be
entering in the iPhone application.

5.Optionally, you can turn ON notifications from MyDoorOpener. By default all
notifications are turned OFF. So if you don’t care for notifications, you can skip
this section altogether and move on to the next section of this document.

MyDoorOpener currently supports 2 types of notifications:

Watchdog Open Notification As soon as a door/device gets opened,

a timer is started and after a
configurable amount of time, a
notification gets fired, unless the
door/device gets closed before the timer
reaches its expiration.

Open Notification As soon as a door/device gets opened,
a notification gets fired.

Each notification type can be turned ON or OFF individually. You can get notified
for a single type or for both. In all cases, notifications get fired whether the
door/device gets opened thru the iPhone application or by any other means. For
now, notifications are global, therefore, if turned ON, all sensors are observed.
You currently can’t specify which sensors are observed and which aren’t.

To turn ON “Watchdog Open Notifications”, uncomment the following line (near
line ~107). You can also change the default value (5) to the number of minutes
you want:

#define NOTIFICATIONS_WATCHDOG_MINUTES 5

To turn ON regular “Open Notifications”, uncomment the following line (near line
~110):

#define NOTIFICATIONS_OPEN

MyDoorOpener currently supports 3 notification broadcasting mechanisms:

Push Notifications Will send a push notification to your iPhone. Requires

the purchase of the Prowl iPhone application.
http://prowlapp.com/

SMS Notifications Will send an SMS message to your mobile phone,
using your mobile carrier’s SMTP to SMS gateway.
http://en.wikipedia.org/wiki/List_of_SMS_gateways/

Email Notifications Will send an email message to a configurable email
address, typically using your ISP’s SMTP server.

Each notification broadcasting mechanism can be turned ON or OFF individually.
You can get notified using a single mechanism or all of them, for as long as you
configure them appropriately.

To turn ON “Push Notifications”, uncomment the following line (near line ~117)
and provide the required Prowl API key for your iPhone device (near line ~123).

#define PUSH_NOTIFICATIONS

static const char prowlApiKey[] = "paste-your-prowl-provided-api-key-here";

To turn ON “SMS Notifications”, uncomment the following line (near line ~141),
provide the required smtp address for your mobile (near line ~146) and smtp
server (near line ~160).

#define SMS_NOTIFICATIONS

static const char smtpToForSms[] = "your-mobile-number@your-carrier-
gateway.com";

static const char smtpServerName[] = "smtp-server.your-isp.com";

To turn ON “Email Notifications”, uncomment the following line (near line ~155),
provide the required smtp server (near line ~160) and email address (near line
~166).

#define SMTP_NOTIFICATIONS

static const char smtpServerName[] = "smtp-server.your-isp.com";

static const char smtpToForEmail[] = "your.address@gmail.com";

6.Compile the MyDoorOpener.ino project from within the Arduino IDE, using the
Sketch -> Verify/Compile menu option. Make sure there are no compiler
warnings or errors.

7.Connect your Arduino to your computer using a standard micro USB cable.
From the Arduino IDE, choose the Tools -> Board -> Arduino Leonardo menu
option. Upload the project, using the File -> Upload menu option.

8.Once the upload is completed, you can unplug the Arduino from your computer.
You will also need to either “reset” the Arduino (using the reset button if one is
available on the board) or unplug the AC power from the Arduino for a few
seconds. This will have the MyDoorOpener program initiated.

This concludes the software configuration process.

Network Configuration

1.You should first test your installation by trying to access your Arduino with a
web browser from within the same internal network. To do so, fire up your
favorite web browser and type in the IP address you configured your Arduino to
listen to, from step #4 of the software configuration process.

You should see a screen similar to the one on
the left if things are working properly (your web
browser must be able to display XML in order for
this to work).

2.You should now configure your home router to do NAT port forwarding to your
Arduino so that you can access it from the internet, using your home router’s ISP
assigned public IP address instead. This is required because the IP address
assigned in step #4 of the software configuration process is an internal IP
address, which is not visible from the internet.

The Arduino is listening on port 80 (default) so you will need to input a NAT
forwarding rule that will forward to that port, off the IP address you configured in
step #4 of the software configuration process.

How NAT port forwarding works is specific from router to router, therefore it is
beyond the scope of this document to cover these specifics. You can either look
at your home router manual or Google around if you aren’t sure how this can be
achieved with your particular home router.

3.Another aspect you might want to look into is dynamic DNS. Since your home
router most likely gets assigned an IP address by your ISP, it is subject to
change from time to time. In order to be shielded from such changes, it is
recommended to use a name rather than an IP address. The name will map to an
IP address and with dynamic DNS services, that name to IP mapping will get
maintained whenever your ISP allocates a new IP address to your home router.

Again, the details on how dynamic DNS works and the intricacies for the many
dynamic DNS service providers out there is beyond the scope of this document.
You can Google around to get more details on how such service works, the many
service providers that offer this service, as well as how it can be configured with
your particular home router.

This concludes the network configuration process.

iPhone Configuration

1.Download the iPhone application from the Apple iTunes store:
http://itunes.apple.com/app/mydooropener/id359774310

2.Once installed on your iPhone, open the application and click the small
configuration gear located at the top right of the main screen.

3.Fill-in the configuration fields as follows:

Controller
Field Name Description
URL The URL used to connect to your Arduino from the internet. This

is not the internal IP address for your Arduino, but a name or IP
address that is visible from the internet. Typically, this will be a
URL with the name or IP address of your home router on which
you’ll have configured a NAT forwarding rule that will forward to
your Arduino. This URL must have the form
http://xxx.yyy.zzz:port where xxx.yyy.zzz is either a fully qualified
name or IP address. The port number is optional.

Password The password for your Arduino, as configured in the software
configuration process. This must match as-is, and is case
sensitive.

Doors & Devices
Field Name Description
Relay Pin Number Choose the relay pin number based on your setup, typically:

COM1/NO1 = Relay pin #7
COM2/NO2 = Relay pin #8

Status Pin Number Choose the status pin number based on your setup, typically:

COM1/NO1 = Status pin #3
COM2/NO2 = Status pin #4

We hope this document was helpful is setting up your MyDoorOpener project.

If you have questions or if find inaccuracies in this document, please use our
online forums to find answers to your questions or report problems.

Thanks for using MyDoorOpener and for your continued support!

