
Introduction
The MyDoorOpener project has attracted a surprisingly high number of enthusiasts over the
years. Unfortunately, until today, the project accessibility was rather limited to experienced
electronics hobbyists, due to the complexity involved in the hardware assembly portion of the
project.

Today, this is about to change ... We received many requests to provide an easier way to build
the project, particularly from people with a more limited knowledge of general electronics.

This doesn’t mean you don’t need to know anything about electronics ... You still need to have
some basic understanding. What it does mean is that you can get around with a simplified
components selection/purchase process. Also, you can set things up without lifting your
soldering iron - you may not even own one for crying out loud! For many of you, this is great
news, which makes the project a lot more accessible.

The simplified approach proposed in this document has the following pros and cons.

Pros

Single source for components purchase

Simplified components selection process

Simplified assembly procedure

No soldering required

Cons

Final assembly is not as robust as when soldering techniques are used

Must deal with limited industry available components, enclosure, etc

Components Supplier
The components for the simplified version of the project can be ordered directly from the
following electronics parts suppliers (we are not affiliated with them in any way) :

Suppliers

United States http://www.robotshop.com/

Canada http://www.robotshop.ca/

Europe http://www.robotshop.eu/

http://www.robotshop.com
http://www.robotshop.com
http://www.robotshop.ca
http://www.robotshop.ca
http://www.robotshop.eu
http://www.robotshop.eu

Components List
Following is the list of components that should be ordered in order to build a single door
version of the MyDoorOpener project :

The enclosure is optional. All parts will fit within the enclosure, but we must say, it’ll be a tight
squeeze to get everything in there. If you’re going for more than one door, this enclosure will
not work.

The prices above can give you an indication of rough costing for the project, but those prices
may obviously change over time. Same applies for the actual part numbers and their
availability. We can’t guarantee anything, but we’ll try our best to keep this document up to
date (please report any discrepancy you find when purchasing your components).

Hardware Assembly
1. Snap the Arduino

Ethernet Shield
(RB-Ard-11) on top
of the Arduino Uno
Micro controller
(RB-Ard-18).

2. Connect the DFRobot Single Relay (RB-Dfr-35) to your
existing garage door opener wall button. This will
require the installation of 2 low voltage wires (red and
blue on the left illustration) going from the green
terminal blocks labelled IN and OUT1, to your existing
garage door wall mount button station.

When you open up your garage wall mount button
station, you’ll typically find 2 screws onto which you’ll
attach the other ends of the 2 low voltage wires (red
and blue) coming from the relay block.

It doesn’t matter which terminal from the wall mount
button station gets linked with IN or OUT1, for as long
as the entire setup can form a closed loop whenever
the relay gets triggered.

REF: http://www.dfrobot.com/wiki/index.php?title=Relay_Module_(Arduino_Compatible)_(SKU:_DFR0017)

http://www.dfrobot.com/wiki/index.php?title=Relay_Module_(Arduino_Compatible)_(SKU:_DFR0017)
http://www.dfrobot.com/wiki/index.php?title=Relay_Module_(Arduino_Compatible)_(SKU:_DFR0017)

3. Connect the DFRobot Single Relay (RB-Dfr-35) to the
Arduino Ethernet Shield (RB-Ard-11). This will require
the usage for one of the DFRobot Analog Sensor
Cables (RB-Dfr-73).

You will need to cut off the black connector end of the
cable, strip the plastic shielding on the end of each
wire, and have them individually connected, as follows:

At this point in the assembly process, your
Arduino Ethernet Shield (RB-Ard-11)
should have 3 wires hooked up to it
(black, blue and red), and should
somewhat look like the picture on the left.

Make sure you have any excess wire
tucked away nicely along the edges or
even underneath the boards so that the
enclosure can be properly closed.

There’s no soldering here so make sure
each wire end is tightly secured within its
respective connector socket to avoid
undesired or unexpected disconnections.

Relay Pin Wire Color Arduino Pin

Input (1) Blue Digital Pin 9

Power (2) Black 5V

GND (3) Red GND

4. Connect the Seeedstudio 3 Pin Terminal Module
(RB-See-58) to the Arduino Ethernet Shield
(RB-Ard-11). This will require the usage for one
of the Seeestudio Electronic Brick 3 Wire
Cables (RB-See-57).

Once again, you will need to cut off one end of
the cable, strip the plastic shielding, and
individually connect each of the wires as
follows:

This portion of the assembly will allow for status monitoring of your garage door. Is the
door opened or is it closed ? How it works is that the Arduino will flow +3 volts (yellow
wire) and +5 volts (black wire) to your status sensing device. Your status sensing device is
expected to flow back on analog pin #3 (red wire), either +3 volts when the door is closed
or +5 volts when the door is opened. This is how MyDoorOpener will determine whether
the door is opened or closed, based on the voltage that flows back to analog pin #3. How
this is achieved is beyond the scope of this document as many strategies are possible,
depending on which type of sensing device you will be using (alarm panel, door sensor,
etc). All that matters is that you respect the +3v (door is closed) and +5v (door is opened)
protocol.

Use the green connecting block terminals to connect your status sensing device.

At this point in the assembly process, your
Arduino Ethernet Shield (RB-Ard-11) should
have 3 additional wires hooked up to it
(black, yellow and red), and should
somewhat look like the picture on the left.

Module Pin Wire Color Arduino Pin

Signal Black +5v

Vcc Red Analog Pin 3

GND Yellow +3v

5. Place the Arduino Uno Micro controller (RB-Ard-18)
and the Arduino Ethernet Shield (RB-Ard-11) assembly
inside the enclosure (RB-Spa-472).

Make sure you have any excess wire tucked away
nicely along the edges or even underneath the boards
so that the enclosure can be properly closed.

Place the relay block (RB-Dfr-35) and terminal module (RB-See-58) at the rear end of the
enclosure. Try to make everything fit as tightly as possible so that the enclosure can be
properly closed. You can leverage the removable top cover to gain some extra mounting
space and/or use that opening to have the wires running to your garage door and sensor.

Close the enclosure.

6. Connect the Arduino Ethernet Shield (RB-Ard-11) to your network using a standard RJ45
network cable and have it attached to your home network/router.

7. Connect the Arduino Uno Micro controller (RB-Ard-18) to the power supply (RB-Spa-103)
and have it connected to an AC wall outlet.

This concludes the hardware assembly process. You can optionally use silicone to better
secure each wire to its respective connector socket on the Arduino terminal blocks. If you do,
make sure you test everything and confirm that it’s properly working prior to doing so.

Software Configuration
1. Download the Arduino IDE software from the Arduino web site, based on the operating

system you are using :

Operating System Arduino Download

Windows http://arduino.googlecode.com/files/arduino-1.0.1-windows.zip

Mac OSX http://arduino.googlecode.com/files/arduino-1.0.1-macosx.zip

Linux 32bit http://arduino.googlecode.com/files/arduino-1.0.1-linux.tgz

Linux 64bit http://arduino.googlecode.com/files/arduino-1.0.1-linux64.tgz

* Note that the version currently supported is version 1.0.1. Using any other version of the
Arduino IDE is not officially supported.

2. Download the MyDoorOpener project ZIP file :

https://github.com/yanavery/MyDoorOpener-Arduino/zipball/master

3. Have the files extracted from the ZIP file so that the directory and file structure is similar to
the following :

Respecting the location of libraries is important. If you don’t, you will get compiler warnings
and/or errors when compiling the project with the Arduino IDE.

http://arduino.googlecode.com/files/arduino-1.0.1-windows.zip
http://arduino.googlecode.com/files/arduino-1.0.1-windows.zip
http://arduino.googlecode.com/files/arduino-1.0.1-macosx.zip
http://arduino.googlecode.com/files/arduino-1.0.1-macosx.zip
http://arduino.googlecode.com/files/arduino-1.0.1-linux.tgz
http://arduino.googlecode.com/files/arduino-1.0.1-linux.tgz
http://arduino.googlecode.com/files/arduino-1.0.1-linux64.tgz
http://arduino.googlecode.com/files/arduino-1.0.1-linux64.tgz
https://github.com/yanavery/MyDoorOpener-Arduino/zipball/master
https://github.com/yanavery/MyDoorOpener-Arduino/zipball/master

4. Open the MyDoorOpener.ino file inside the Arduino IDE. Edit the following lines to match
your specific configuration (and save) :

Line # Item Description

~ 38 IP Address Change to match the network IP address you want your Arduino
to be accessible from. You will need to make sure this network
IP address is reserved and never assigned to any other devices
on your network.

~ 42 Password Change to set the password you want to protect your Arduino
with. This password will need to match with the password you
will be entering in the iPhone application.

5. Compile the MyDoorOpener.ino project from within the Arduino IDE, using the Sketch ->
Verify/Compile menu option. Make sure there are no compiler warnings or errors.

6. Connect your Arduino to your computer using a standard USB cable and upload the
project, using the File -> Upload menu option from within the Arduino IDE.

7. Once the upload is completed, you can unplug the Arduino from your computer. You will
also need to either “reset” the Arduino (using the reset button on the board) or unplug the
AC power from the Arduino for a few seconds. This will have for effect to have the
MyDoorOpener program to be initiated.

This concludes the software configuration process.

Network Configuration
1. You should first test your installation

by trying to access your Arduino with
a web browser from within the same
internal network. To do so, fire up
your favorite web browser and type in
the IP address you configured your
Arduino to listen to, from step #4 of
the software configuration process.

You should see a screen similar to
the one on the right if things are
working properly (your web browser
must be able to display XML in order
for this to work).

2. You should now configure your home router to do NAT port forwarding to your Arduino so
that you can access it from the internet, using your home router’s ISP assigned public IP
address instead. This is required because the IP address assigned in step #4 of the
software configuration process is an internal IP address which is not visible from the
internet.

The Arduino is listening on port 80 (default) so you will need to input a NAT forwarding rule
that will forward to that port, off the IP address you configured in step #4 of the software
configuration process.

How NAT port forwarding works is specific from router to router, therefore it is beyond the
scope of this document to cover these specifics. You can either look at your home router
manual or Google around if you aren’t sure how this can be achieved with your particular
home router.

3. Another aspect you might want to look into is dynamic DNS. Since your home router most
probably gets assigned an IP address by your ISP, it is subject to change at any time. In
order to be shielded from such change, it is recommended to use a name rather than an
IP address. The name will map to an IP address and with dynamic DNS services, that
name to IP mapping will get maintained whenever your ISP allocates a new IP address to
your home router.

Again, the details on how dynamic DNS works and the intricacies for the many dynamic
DNS service providers out there is beyond the scope of this document. You can Google
around to get more details on how such service works, the many service providers that
offer this service, as well as how it can be configured with your particular home router.

This concludes the network configuration process.

iPhone Configuration
1. Download the iPhone application from the Apple iTunes store :

http://itunes.apple.com/app/mydooropener/id359774310

2. Once installed on your iPhone, open the application and click the small configuration gear
located at the bottom right of the main screen.

3. Fill-in the configuration fields as follows :

Field Name Description

URL The URL used to connect to your Arduino from the
internet. This is not the internal IP address for your
Arduino, but a name or IP address that is visible from the
internet. Typically, this will be a URL with the name or IP
address of your home router on which you’ll have
configured a NAT forwarding rule that will forward to your
Arduino. This URL must not include the port number. This
URL must have the form http://xxx.yyy.zzz where
xxx.yyy.zzz is either a DNS name or an IP address. You
can optionally include a port number (ie: http://
xxx.yyy.zzz:8888)

Password The password for your Arduino, as configured in the
software configuration process. This must match as-is,
and is case sensitive.

We hope this document was helpful is setting up your MyDoorOpener project.

If you have questions or if you find inaccuracies in this document, please drop us a note at
support@mydooropener.com .

Thank you for using MyDoorOpener !

http://xxx.yyy.zzz
http://xxx.yyy.zzz
http://xxx.yyy.zzz
http://xxx.yyy.zzz
http://xxx.yyy.zzz
http://xxx.yyy.zzz
http://itunes.apple.com/app/mydooropener/id359774310
http://itunes.apple.com/app/mydooropener/id359774310
mailto:support@mydooropener.com
mailto:support@mydooropener.com

